MicroRNA Tissue Atlas of the Malaria Mosquito Anopheles gambiae
نویسندگان
چکیده
Anopheles gambiae mosquitoes transmit the human malaria parasite Plasmodium falciparum, which causes the majority of fatal malaria cases worldwide. The hematophagous lifestyle defines mosquito reproductive biology and is exploited by P. falciparum for its own sexual reproduction and transmission. The two main phases of the mosquito reproductive cycle, previtellogenic (PV) and postblood meal (PBM), shape its capacity to transmit malaria. Transition between these phases is tightly coordinated to ensure homeostasis between mosquito tissues and successful reproduction. One layer of control is provided by microRNAs (miRNAs), well-known regulators of blood meal digestion and egg development in Aedes mosquitoes. Here, we report a global overview of tissue-specific miRNAs (miRNA) expression during the PV and PBM phases and identify miRNAs regulated during PV to PBM transition. The observed coordinated changes in the expression levels of a set of miRNAs in the energy-storing tissues suggest a role in the regulation of blood meal-induced metabolic changes.
منابع مشابه
Melanotic Pathology and Vertical Transmission of the Gut Commensal Elizabethkingia meningoseptica in the Major Malaria Vector Anopheles gambiae
BACKGROUND The resident gut flora is known to have significant impacts on the life history of the host organism. Endosymbiotic bacterial species in the Anopheles mosquito gut are potent modulators of sexual development of the malaria parasite, Plasmodium, and thus proposed as potential control agents of malaria transmission. RESULTS Here we report a melanotic pathology in the major African ma...
متن کاملDraft Genome Sequences of Elizabethkingia anophelis Strains R26T and Ag1 from the Midgut of the Malaria Mosquito Anopheles gambiae
Elizabethkingia anophelis is a species in the family Flavobacteriaceae. It is a dominant resident in the mosquito gut and also a human pathogen. We present the draft genome sequences of two strains of E. anophelis, R26(T) and Ag1, which were isolated from the midgut of the malaria mosquito Anopheles gambiae.
متن کاملA Low-Cost Microfluidic Chip for Rapid Genotyping of Malaria-Transmitting Mosquitoes
BACKGROUND Vector control is one of the most effective measures to prevent the transmission of malaria, a disease that causes over 600,000 deaths annually. Around 30-40 Anopheles mosquito species are natural vectors of malaria parasites. Some of these species cannot be morphologically distinguished, but have behavioral and ecological differences. Emblematic of this is the Anopheles gambiae spec...
متن کاملDraft genome sequences of Enterobacter sp. isolate Ag1 from the midgut of the malaria mosquito Anopheles gambiae.
An isolate of Enterobacter sp. was obtained from the microbial community within the gut of the Anopheles gambiae mosquito, a major malaria vector in Africa. This genome was sequenced and annotated. The genome sequences will facilitate subsequent efforts to characterize the mosquito gut microbiome.
متن کاملThe virulent Wolbachia strain wMelPop efficiently establishes somatic infections in the malaria vector Anopheles gambiae.
Wolbachia pipientis bacteria are maternally inherited endosymbionts that are of interest to control the Anopheles mosquito vectors of malaria. Wolbachia does not infect Anopheles mosquitoes in nature, although cultured Anopheles cells can be infected. Here, we show that the virulent Wolbachia strain wMelPop can survive and replicate when injected into female Anopheles gambiae adults, but the so...
متن کامل